Darstellung von S,S-Diphenyl-N-(trimethylsilyl)sulfimin und Reaktionen mit Wolframhexafluorid – Einkristall-Röntgenstrukturanalyse von $F_4W(N = SPh_2)_2$

Herbert W. Roesky*, Michael Zimmer, Mathias Noltemeyer und George M. Sheldrick

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 12. Februar 1988

Aus $Ph_2S = NH$ wird mit Me_3SiNMe_2 durch Metathese S,S-Diphenyl-N-(trimethylsilyl)sulfimin (1) erhalten. WF₆ reagiert mit 1 im Molverhältnis 1:1 zu F₅WN=SPh₂ (2) und im Molverhältnis 1:2 zu F₄W(N=SPh₂)₂ (3). Von 3 wird eine Röntgenstrukturanalyse vorgelegt.

Zahlreiche Arbeiten der letzten Jahre haben gezeigt, daß Moleküle mit kinetisch labilen Bindungen durch sterisch anspruchsvolle Substituenten stabilisiert werden können^{1,2)}. Mit den Liganden Ph₃P = N-³⁾ und Me₂S(O) = N-⁴⁾ konnten wir an Wolfram(VI)-fluoriden eine elektronische Stabilisierung erreichen. Anhand von elektrochemischen Untersuchungen läßt sich der elektronisch stabilisierende Beitrag des Ph₃P = N-Liganden erfassen⁵⁾. Im folgenden berichten wir über eine weitere Möglichkeit zur elektronischen Stabilisierung von Wolfram(VI)-fluoriden. Dazu wird WF₆ mit S,S-Diphenyl-*N*-(trimethylsilyl)sulfimin (1) zur Reaktion gebracht.

Die Ausgangsverbindung 1 läßt sich in sehr guter Ausbeute aus $Ph_2S = NH^{50}$ und Me_3SiNMe_2 herstellen. 1 reagiert mit WF₆ unter Fluortrimethylsilan-Abspaltung zu 2.

$$Ph_{2}S = NSiMe_{3} + WF_{6} - \rightarrow F_{5}WN = SPh_{2} + Me_{3}SiF$$

$$1$$

$$2$$

Die Reaktion wird in Dichlormethan bei -78 °C durchgeführt. 2 ist ein mikrokristalliner, blaßgelber Feststoff, der nur wenig luft- und hydrolyseempfindlich ist.

Die Konstitution von 2 läßt sich eindeutig aus dem ¹⁹F-NMR Spektrum ableiten. Man findet zwei Signale im Integrationsverhältnis 4:1, ein Dublett bei $\delta = 50.7$ und ein Quintett bei $\delta = -78.5$. Damit liegt eine Monosubstitution am Metallatom vor. Im IR-Spektrum ordnen wir die Bande bei 1080 cm⁻¹ der S = N-Valenzschwingung zu.

Setzt man 1 mit 2 in Acetonitril bei Raumtemp. um, so erhält man einen gelben Feststoff der Zusammensetzung $F_4W(N=SPh_2)_2$ (3).

$$1 + 2 \longrightarrow F_4 W(N = SPh_2)_2 + Me_3SiF_3$$

3 ist weder luft- noch hydrolyseempfindlich. Selbst monatelanges Stehenlassen über Wasser führt nur zu geringer Hydrolyse.

Preparation of S,S-Diphenyl-N-(trimethylsilyl)sulfimine and Reactions with Tungsten Hexafluoride – X-Ray Structure Analysis of $F_4W(N = SPh_2)_2$

 $Ph_2S = NH$ reacts with Me₃SiNMe₂ to give S,S-diphenyl-N-(trimethylsilyl)sulfimine (1) in a metathesis. Reaction of WF₆ with 1 in a 1:1 molar ratio leads to F₅WN = SPh₂ (2); a 1:2 molar ratio results in the formation of F₄W(N = SPh₂)₂ (3). The structure of 3 is confirmed by an X-ray analysis.

Erwartungsgemäß erfolgt die Zweitsubstitution in *cis*-Stellung. Die chemische Verschiebung der äquatorialen F-Atome von $\delta = -19.1$ und der axialen F-Atome von $\delta = -25.4$ mit der Kopplungskonstanten von 72.68 Hz führen zu einem A₂B₂-Spektrum. Der Unterschied in den Intensitäten zwischen Original- und simuliertem Spektrum läßt sich auf unterschiedliche Relaxationszeiten der Fluoratome zurückführen. Durch Umkristallisieren aus DMF können für eine Röntgenstrukturanalyse geeignete Einkristalle von 3 erhalten werden.

Abb. 1. Molekülstruktur von 3

In Abb. 1 ist das Molekül 3 dargestellt. Die Atomkoordinaten werden in Tab. 1 angegeben. Die $Ph_2S = N$ -Liganden sind in *cis*-Stellung angeordnet. Aus der Tab. 2 sind die Bindungslängen und -winkel zu entnehmen. Der mittlere W-N-Abstand beträgt 182.9(6) pm und ist vergleichbar mit dem in F₄W(N = PPh_3)₂ [182.5(6)]³⁾, und in F₄W-(N=S(O)Me₂)₂ [182.5]⁴⁾. Die S-N--W-Winkel [138.4(3) und 171.7(3)] zeigen große Abweichungen; dies deutet darauf hin, daß die Funktion des S-N-W-Biegungspotentials sehr flach verlaufen sollte.

Chem. Ber. 121, 1377-1379 (1988) © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1988 0009-2940/88/0808-1377 \$ 02.50/0

Tab. 1. Atomkoordinaten (×10⁴) und äquivalente isotrope thermische Parameter (pm² · 10⁻¹). Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors

	· · · · · · · · · · · · · · · · · · ·				
	x	у	z	U(eq)	
	1505(1)		1(00(1))	(0,(1))	
W	1525(1)	2244(1)	1490(1)	42(1)	
F(1)	155(3)	2446(2)	2371(3)	/2(1)	
F(2)	1623(2)	3221(2)	1539(2)	61(1)	
F(3)	4//(3)	2426(2)	245(3)	63(1)	
$\mathbf{F}(4)$	2387(3)	2281(1)	2870(3)	65(1)	
S(1)	384/(1)	2091(1)	-168(1)	4/(1)	
N(I)	2810(3)	2124(2)	6/4(3)	50(1)	
S(2)	-41(1)	905(1)	1828(1)	56(1)	
N(2)	1089(4)	1340(2)	1555(3)	50(1)	
C(11)	5176(4)	2143(2)	6/3(4)	47(2)	
C(12)	5141(5)	2201(3)	1806(5)	64(2)	
C(13)	6190(6)	2257(3)	2405(6)	77(3)	
C(14)	7248(5)	2270(3)	1900(6)	71(2)	
C(15)	7272(5)	2210(3)	772(6)	77(3)	
C(16)	6233(5)	2154(3)	147(5)	69(2)	
C(21)	3898(4)	1222(2)	-620(4)	48(2)	
C(22)	3418(5)	712(3)	4(5)	62(2)	
C(23)	3496(5)	59(3)	-367(5)	69(2)	
C(24)	4000(6)	-83(3)	-1345(6)	79(3)	
C(25)	4507(7)	430(4)	-1944(5)	92(3)	
C(26)	4422(6)	1098(3)	-1598(5)	73(2)	
C(31)	-241(7)	947(3)	3282(6)	79(3)	
C(32)	-1302(10)	929(6)	3677(9)	160(6)	
C(33)	-1508(17)	941(9)	4774(14)	228(12)	
C(34)	-606(21)	1020(7)	5463(12)	234(14)	
C(35)	429(13)	1064(5)	5108(8)	181(7)	
C(36)	645(10)	1046(5)	4004(6)	133(5)	
C(41)	427(5)	51(2)	1706(4)	50(2)	
C(42)	-399(6)	-411(3)	1317(5)	82(3)	
C(43)	-77(9)	-1076(3)	1213(6)	105(4)	
C(44)	986(10)	-1284(4)	1477(6)	97(4)	
C(45)	1845(7)	-827(4)	1868(6)	86(3)	
C(46)	1558(5)	-146(3)	1987(5)	63(2)	
N(1')	735(5)	6096(4)	945(4)	81(2)	
C(2')	1097(20)	5740(12)	1766(16)	99(8)	
C(3')	1091(13)	6259(6)	-258(10)	183(7)	
C(4')	-637(18)	5925(10)	545(21)	162(11)	
C(5')	802(21)	5623(10)	397(23)	144(11)	
C(6')	1268(18)	5369(14)	1209(20)	123(11)	

Tab. 2. Ausgewählte Bindungsabstände (pm) und Winkel (°)

the second se			A REAL PROPERTY AND ADDRESS OF ADDRE
W-F(1)	195.9 (3)	W-F(2) 1	92.9 (3)
W-F(3)	191.5 (3)	W-F(4) 1	90.3 (3)
W-N(1)	180.7 (4)	W-N(2) 1	85,1 (4)
S(1) - N(1)	158.9 (4)	S(2)-N(2) 1	58,7 (4)
S(1)-C(11)	178.7 (5)	S(2)-C(31) 1	78.6 (7)
S(1)-C(21)	179.9 (5)	S(2)-C(41) 1	77.2 (5)
F(1) - W - F(2)	80.0(1)	F(1)-W-F(3)	84.9(1)
F(2) - W - F(3)	82.5(1)	F(1)-W-F(4)	84.5(1)
F(2) - W - F(4)	84.7(1)	F(3)-W-F(4)	164.7(1)
F(1)-W-N(1)	175.8(2)	F(2)-W-N(1)	95.8(2)
F(3) - W - N(1)	94.7(2)	F(4)-W-N(1)	95.1(2)
F(1) - W - N(2)	87.4(2)	F(2)-W-N(2)	167.0(2)
F(3)-W-N(2)	93.2(2)	F(4)-W-N(2)	97.4(1)
W-N(1)-S(1)	171.7(3)	W - N(2) - S(2)	138.4(3)
N(1) - S(1) - C(11)) 105.0(2)	N(1)-S(1)-C(21)	105.6(2)
C(11)-S(1)-C(2	1) 101.1(2)	C(31)-S(2)-C(41) 100.2(3)
N(2)-S(2)-C(31) 108.4(3)	N(2)-S(2)-C(41)	104.5(2)
N(1)-W-N(2)	96.8(2)		

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die großzügige Unterstützung.

Experimenteller Teil

Ausgangsmaterialien: S,S-Diphenylsulfimin wurde nach Lit.^{6,7)} dargestellt, Wolframhexafluorid aus Wolfram und elementarem Fluor. Alle verwendeten Lösungsmittel wurden nach den üblichen Methoden getrocknet und von Sauerstoff befreit. S,S-Diphenyl-N-(trimethylsilyl)sulfimin (1): 10 g (49.7 mmol) S,S-Diphenylsulfimin⁷⁾ werden mit einem Überschuß N-(Trimethylsilyl)dimethylamin und 2 Tropfen konz. H₂SO₄ solange unter Rückfluß erhitzt, bis sich kein Dimethylamin mehr entwickelt. Überschüssiges N-(Trimethylsilyl)dimethylamin wird i. Vak. entfernt, der Rückstand in Hexan gelöst und die Lösung filtriert. Nach Entfernen des Lösungsmittels i. Vak. bleibt analysenreines 1 zurück. Ausb. 12.8 g (46.9 mmol, 94%), Schmp. 45 °C. – IR (Nujol): 1435 cm⁻¹ sst, 1245 st, 1235 sst, 1080 sst b, 1015 st, 855 sst, 825 sst, 750 sst, 735 sst, 690 sst. – ¹H-NMR (TMS ext., CDCl₃): δ = 0.15 (s, SiCH₃), 7.5 (m, SC₆H₅). – MS (EI): m/z (%) = 273 M⁺ (70), 258 M – CH₃ (100), 186 Ph₂S (30), 109 PhS (28), 77 Ph (35), 73 SiMe₃ (50).

(Diphenyl- λ^4 -sulfanyliden)pentafluorowolfram(VI) (2): Zu 2.83 g (10.37 mmol) 1 in 80 ml CH₂Cl₂ werden innerhalb von 15 min bei -78 °C 3.13 g (10.5 mmol) WF₆ kondensiert. Man läßt die Reaktionsmischung langsam auf Raumtemp. kommen und rührt weitere 10 h. Der entstandene gelbe Niederschlag wird abfiltriert, mit wenig CH₂Cl₂ gewaschen und i.Vak. getrocknet. Ausb. 4.5 g (93%), Schmp. 198 °C. – IR (Nujol): 1445 cm⁻¹ sst, 1440 sst, 1170 st, 1150 sst b, 990 st, 755 sst, 745 sst, 680 sst, 665 sst, 610 sst b. – ¹⁹F-NMR (CFCl₃ ext., CD₃CN): δ = 78.5 (W – F_a quint, J_{F,F} = 51.7 Hz); 50.7 (W – F_e d, J_{F,F} = 51.7 Hz).

cis-Bis(diphenyl- λ^4 -sulfanyliden)tetrafluorowolfram(VI) (3): Zu 3.72 g (8.0 mmol) 2 in 80 ml CH₃CN wird bei Raumtemp. innerhalb von 30 min die Lösung von 2.18 g (8.0 mmol) 1 in 30 ml CH₃CN getropft und weitere 12 h gerührt. Der gelbe Niederschlag wird abfiltriert, mit wenig CH₃CN gewaschen und i. Vak. getrocknet. 3 ist luftstabil und sehr hydrolysebeständig. Einkristalle für eine Röntgenstrukturanalyse konnten aus DMF bei -24° C erhalten werden. Ausb. 4.69 g (95.5%), Schmp. 129°C. – IR (Nujol): 1445 cm⁻¹ sst, 1170 sst, 1050 sst b, 1020 sst, 990 sst, 770 st, 755 st, 740 st, 690 sst, 680 st. – ¹⁹F-NMR (CFCl₃ ext., CD₃CN): $\delta =$ -19.1 (W-F m, $J_{F,F} =$ 72.68 Hz); -25.4 (W-F m, $J_{F,F} =$ 72.68 Hz).

 $\begin{array}{ccc} C_{24}H_{20}F_4N_2S_2W \ (660.4) & \mbox{Ber. C} \ 43.65 \ H \ 3.05 \ S \ 9.71 \ W \ 27.84 \\ & \mbox{Gef. C} \ 43.9 \ H \ 3.1 \ S \ 10.1 \ W \ 26.6 \end{array}$

Kristallstrukturanalyse von 3⁸): Die Röntgendaten wurden bei Raumtemperatur auf einem Stoe-Siemens-Vierkreisdiffraktometer mit Mo- K_{α} -Strahlung ($\lambda = 71.069$ pm) gesammelt. Nach Mittelung der 5170 Messungen blieben 3207 unabhängige Reflexe mit $F > 3\sigma(F)$, die für alle Berechnungen verwendet wurden. Die Struktur wurde mit anisotropen Nichtwasserstoffatomen und einem Reiter-Modell für die H-Atome [C-H 96 pm auf den externen C-C-C-Winkelhalbierenden, $U(H) = 800 \text{ pm}^2$] auf R = 0.027, $R_w = 0.030$ [wobei $w^{-1} = \sigma^2(F) + 0.0005 F^2$] verfeinert. Ein ungeordnetes Lösungsmittelmolekül, möglicherweise DMF, befindet sich im Kristall.

Kristallographische Daten: Raumgruppe $P2_1/n$, Z = 4, a = 1133.0(2), b = 1970.6(3), c = 1211.0(2) pm; $\beta = 92.29(2)^\circ$; V = 2.7016 nm³, μ (Mo- K_{π}) = 4.57 mm⁻¹, ρ (ber) = 1.803 Mg m⁻³.

CAS-Registry-Nummern

1: 114155-99-6 / 2: 114156-00-2 / 3: 114156-01-3 / $Ph_2S\!=\!NH\!:$ 36744-90-8 / Me_3SiNMe_2 : 2083-91-2 / WF_6 : 7783-82-6

- ¹⁾ M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, T. Higuchi, J. Am. Chem. Soc. **103** (1981) 4587.

- Am. Chem. Soc. 103 (1981) 4587.
 ²⁾ A. H. Cowley, Polyhedron 3 (1984) 389.
 ³⁾ H. W. Roesky, U. Seseke, M. Noltemeyer, P. G. Jones, G. M. Sheldrick, J. Chem. Soc., Dalton Trans. 1986, 1309.
 ⁴⁾ H. W. Roesky, M. Scholz, F. Edelmann, M. Noltemeyer, G. M. Sheldrick, Chem. Ber. 120 (1987) 1881.
 ⁵⁾ H. W. Roesky, T. Tojo, M. Ilemann, D. Westhoff, Z. Naturforsch., Teil B, 42 (1987) 877.
- ⁶⁾ K. Tsujihara, N. Furukawa, K. Oae, S. Oae, Bull. Chem. Soc.
- ⁷⁾ T. Yoshimura, T. Omata, J. Org. Chem. 41 (1976) 1728.
 ⁸⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D. 7514 Userscheiden 2018. D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinter-legungsnummer CSD-52928, des Autors und des Zeitschriftenzitats angefordert werden.

[31/88]